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As an extension of the Hopfield model, we propose a neural network composed of D-dimensional
spin neurons (D > 1). Our model is equivalent to the Hopfield model in the case of D = 1 and
is related to the clock neural network in the case of D = 2. We derive the free energy of our
model using the replica symmetric theory. When a finite number of patterns are embedded they
are found to be retrievable if the temperature T is lower than 1/D. The phase diagram and the
storage capacity of the network are also obtained with the storage capacity a. = 0.0743 (D = 2)

and a. = 0.0432 (D = 3) for T = 0.

PACS number(s): 87.10.+e, 05.20.—y

I. INTRODUCTION

In the last decade, there has been a great deal of re-
search on neural networks as associative memories. Var-
ious properties, for example the storage capacity of the
network, were studied with use of techniques of statistical
mechanics of spin systems [1-5]. Most of these studies,
however, treated Ising type neurons which represent only
two states, the firing and the resting one.

Recently, there is a growing interest in neural networks
with multistate neurons. The merit of the model is that
one neuron can express a complex state such as a color or
shade of gray of each pixel in the pattern, which would
otherwise require multiple Ising type neurons per pixel.

Rieger [6] and Bollé et al. [7,8] used neurons repre-
sented by spin variables S; (¢ = 1,...,N), which can
take Q values,

L 2(k—1)
Si=-1+"5—1

(1)

Earlier, Kanter proposed a model composed of Potts neu-
rons with g possible discrete states [9]. The dynamics of
the Potts neural network is very complicated (see Refs.
9,10)).

Another possibility for a multistate neuron is the so-
called circular representation, in which the state of the
neuron is represented by points on the circle. The prop-
erty of this model is that the state of each neuron can be
expressed by a phase variable. We show here two exam-
ples of such models; one is the phasor model proposed by
Noest [11,12] and the other is the clock model proposed
by Cook [13]. In Sec. II, we will discuss how these models
are similar to and different from our model.

Noest discussed a phasor network composed of unit-
length two-dimensional vectors (phasors) as neurons.
The network has N phasors S; (¢ =1,...,N), which are
complex numbers with |S;| = 1. In the first version of
the model [11], the S; could assume any such value, but
in the second version [12], the S; were further restricted
to the g roots of S7 = 1. When the ¢th phasor in the uth
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pattern is described as & (i = 1,...,N;pu = 1,...,p),
synaptic couplings C;; are defined as

, ,
Cij = 3 €€ —6), o)
p=1

in order to store patterns. Note that d;; is Kronecker’s
delta function and Z represents the complex conjugate of
a complex z. Since 6;‘ can be expressed as e , storing
patterns is equivalent to storing phases. The dynamics
of each phasors depends on the local (complex) field,

hi = Ci;S;. (3)
i

For a discrete-time updating the state of ith phasor at
the next step is defined as

h;
Si(t +ot) = Thal’ (4)

and for a continuous-time updating the ith phasor evolves
as

ds;
dt

In the network with an asynchronous discrete-time or a
continuous-time updating, an energy can be defined as

1 _
E = _Egs,-cﬁsj, (6)
i#]

= h; — h;S?. (5)

which plays the role of a Lyapunov function. Noest stud-
ied these networks with diluted synaptic connections.
The case of full connection was studied by Gerl et al.
[14].

Cook investigated a related Q-state clock neural-
network model. The Hamiltonian of the system is

__ 1 2m m "
H= o Y S cos 5 {(ms =€) — (s = €0}, (D)
i#] KM
where N is the number of neurons, n; (= 0,1,...

7Q_
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1) (i = 1,...,N) the state of ith neuron and &
(=0,1,...,Q-1) (¢=1,...,N;u=1,...,p) the state of
ith neuron in the uth pattern stored in the network. This
system is reduced to the Hopfield model [15] for Q = 2
and to z-y spin systems for Q = oo, where the state
becomes continuous. It is to be noted that the Hamilto-
nian (7), as well as the energy (6), is invariant under the
transformation {n;} — {n; + k (modQ)}, where k is an
integer. Hence, if a pattern, say {7;}, is stored, the @ —1
related configurations, {7, }, are also stored, where

’Q - 1)‘
(8)

Therefore, notice that only the set of phase differences is
meaningful as the information to be stored. Cook ana-
lyzed this model with the replica symmetric theory and
estimated the storage capacity as a. = 0.038 in the limit
Q = 0.

- Noest’s model and Cook’s model can be regarded as
an extension of the Hopfield model to the clock type one.
We can see similarities between the Noest’s model and
the Cook’s model. They consist of essentially the same
type of model neurons: continuous versions of the Noest’s
model correspond to the Cook’s model with infinite @
and discrete versions of the Noest’s model correspond to
the Cook’s model with finite Q. Furthermore, they have
the same energy as we shall see in the next section. In
this paper we want to consider a different, and more gen-
eral extension of the Hopfield model using D-dimensional
spins (i.e., D-dimensional unit vectors) as neurons. Our
model is a natural D-dimensional (D = 1,2,...) gener-
alization of the Hopfield model. For D = 2, our model
is similar to those of Noest and Cook, but the energy
of our model, or more precisely the algebraic structure
of the interactions, is quite different from the models of
Noest and Cook. These distinctions will be discussed in
detail in the next section.

This paper is organized as follows: In Sec. II, we
propose our neural-network model composed of multi-
dimensional spin neurons. Simulation results are shown
in Sec. III. In Sec. IV, we analyze our model theoret-
ically using a replica symmetric theory. We derive the
free energy of our model near saturation. On the basis
of these results, we calculate and discuss the phase di-
agram and the storage capacity. In the last section, we
summarize our results.

Me; =1 +k mod@Q (i=1,...,N;k=1,...

II. MODEL

‘We consider a network composed of IV neurons, which
are described by D-dimensional unit vectors @®; =
Y(zi(1), Ti(2)s - - - Zip)) (¢ = 1,...,N), where 'z denotes
the transposed vector of z. Each neuron represents an ar-
bitrary point on a surface of D-dimensional unit sphere.
Especially in the case of D = 2, this model neuron is
similar to that of Cook (Q = oo) and of Noest. How-
ever, the neurons are interconnected with all the others
through synaptic couplings, which differ fundamentally
from those in the Noest and Cook models. In this paper,
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we define synaptic couplings by an extended Hebb’s rule
as

1 & oy
Jij=~ﬁ;££“£;‘ @#34), Ja=0, (9

where &} denotes the state of sth neuron in the pth mem-
orized pattern (4 = 1,...,p) and is also a D-dimensional
unit vector. Note that a synaptic strength J;; is here a
D x D matrix and O is a D x D zero matrix.

There are two kinds of dynamics, one is under the zero
temperature (T' = 0) and the other under the finite tem-
perature (T # 0). First, we consider the case T'= 0. We
calculate the local field h;(t) on the ith neuron at time ¢
as

N
hi(t) = Z Jijxi(t). (10)

h;(t) is a D-dimensional and, in general, a nonunit vec-
tor. The state of the neuron 7 at the next time step is
determined by normalizing h;(t) as

h,‘(t)
R (2)] (11)

:l!i(t + At) =

As to the way of updating, here we adopt an asyn-
chronous one, for which we can define an energy function,

1
E = —-5 ;tmi.],-j:cj. (12)
172

This energy is a Lyapunov function for the dynamics.
This is seen as follows: Suppose one of the neuron, say i¢th
neuron, updates as ®;(t) — @;(t+ At), then the variation
of energy AF is calculated as

AE = —|h;(t)|{1 — *=;(t) =:(t + At)} < 0. (13)

Next, in the case of T # 0, a random contribution is
added to Eq. (10) so that the equilibrium state of the
system realizes the canonical ensemble [5,11].

We now discuss the differences between our model and
those of Noest and Cook. For comparison we restrict our
model to the two-dimensional case (clock type). In the
Noest’s model, when S; is described as ‘s and ¢} as

€*%, the energy (6) is rewritten as

1
E=—o5 ZZCOS{(% —00) —(p; —07)} . (14)
£ M
In the Cook’s model, with new notations (27/Q)n; = ¢;
and (27/Q)¢&Y = 6%, the expression (7) coincides with
Eq. (14). When we describe &; = ¥(cosp;, sing;) and
&Y = t(cos 6, sinf!), the energy of our model (12) is
rewritten as

1

E=—— Zcos(goi — 0) cos(p; — 0%).  (15)

i#j M

Therefore, the translational symmetry in Noest’s and
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Cook’s model is not existent in our model, thus the trans-
lated phase pattern {0;+8} is quite different from the pat-
tern {6;} in our model. However, our model has an inver-
sion symmetry in which the energy (12) is invariant un-
der the transformation {@;} — {—=;} or {¢!'} — {—¢&/}.
This fact means that inverted patterns can also be mem-
orized as in the Hopfield model.

III. SIMULATION

In this section, we simulate our model according to
the dynamics (10) and (11) with synaptic couplings (9)
under the zero temperature. We adopt an asynchronous
updating in which at each time step, one neuron is se-
lected randomly to be updated. The time step is set as
At =1/N. Simulation results are shown in the following.

First we examine the case D = 2. Patterns are written
as & = t(cos 0¥, sin6!), with 6% distributed uniformly
in [0,27]. These patterns are uncorrelated in the sense of
vazl(ﬁi‘ &) = 6. Figure 1 shows the time evolutions
of overlap m!(t) defined as

1 1 Y tel
m (t):ﬁz & =, (16)

which start from several initial value of m!(0). From
Fig. 1(a), which is for the case of « = p/N = 0.05
(p = 20, N = 400), we see that the network can retrieve
a memorized pattern. On the other hand, in the case of
a = 0.1 (p = 40, N = 400) the network cannot retrieve
a memorized pattern [Fig. 1(b)]. These results tell us
that the storage capacity a. is 0.05 < a. < 0.1. Note
that this storage capacity is larger than that of Cook
(ac = 0.038 for Q = oo) [13]. This will be discussed
theoretically in the following section.

Next, we make simulations in the case of D =
3. In this case, p patterns are expressed as {i‘ =
t(siny¥ cos 0, sintytsiné!, cosy!'), with uniformly
distributed ! in [0, 7] and 6 in [0, 27x]. These patterns
are also uncorrelated. The result is that, in the case
of @ = 0.025(p = 10, N = 400), the network can re-
trieve a memorized pattern, but in the case of & = 0.075
(p = 30, N = 400), the network cannot retrieve a mem-
orized pattern. Therefore, the storage capacity . is
0.025 < a. < 0.075. This result will also be considered
theoretically in the following section.

IV. MEAN-FIELD THEORY

The mean-field theory is performed to calculate the
free energy of the system with use of the replica method,
i.e., the free energy per neuron, f, is written as

e (zm) —1
f=lim lm =N

(17)

D
overlap

1
time

(b)

overlap

o 5 10 15 20
time

FIG. 1. Time evolutions of overlaps which start from
several initial conditions. A time unit is N steps. (a)
N = 400, p = 20, a = 0.05; (b) N = 400, p =40, a = 0.1.

where (()) denotes a quenched average over the memo-
rized patterns, {¢%}, B = 1/T an inverse temperature of
the system, Z the partition function of the system, and
n the number of replicas. In the following calculation we
use the framework of Amit, Gutfreund, and Sompolinsky
[3] (hereafter referred to as AGS). We adopt

N

HP = _% D tal Jijef — ih"Z‘&” z; (18
v=1

i#j i=1

as the Hamiltonian of the pth replica of the system. We
assume that there are a finite number s (< p) of fields h”
(v =1,...,s) each of which is coupled to vth condensed
pattern. Then ((Z™)) is calculated as

(2" = <<Tr exp (—ﬁ 3 H) >> (19)

= <<Tr,p exp [% Z(tﬂ‘ x?)(*¢Y =f)

ijup

-2 (‘e;‘wf)2+ﬂ§hvzts:w:’}>>.

iup i

(20)

Using the Stratonovich-Hubbard transformation,

A2y = 1 ~ dx ex —$—2+aw (21)
exp | 5a” | = 70— N p(—57 )

we can proceed to calculate Eq. (20) as
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ER dmy 2 tepn P ten  P\2
(z") = (BN)’ <<m,,/n T oD [ﬂN{—% (mt) +Zmz(%2 ¢ w) =Y o et at) H
X /H % exp [ﬁN{—% Z(m;)z + Z(m; + hY) (% Zts;f m;’) - Z 2]1[2 Z(t&' mf)ZH >> (22)

vp vp

The sums ) and ) o, are over the first s patterns and over the remaining p — s patterns, respectively. The products
I1, and [T ,are also considered in the same way. In order to average the first exponential in Eq. (22) over the p — s
uncondensed patterns {£}, we make variable transformations,

a:f(l) s%n Cip(l) s%n i”(z) cee s?n i”(D_z) C‘OS ©?
mg(z) sTn Ci”(l) sin Ci(z) e smgip(D_z) sin ¥
2l =] T | =] S0 Gy €OSGi(D—2) , (23)
zi(p) c0s (i)
and
{i‘“(l) s%n 1/)5(1) s%n 1/)5(2) p s%n 'Mb(D—z) cos 6%
§§2) sin ¢§(1) sin iy - sm:,‘b;‘(D_Z) sin 6%
gr=| & | =] vy c0s Pi(p_2) : (24)
§i(o) cos i)
using polar coordinates in a D-dimensional space. Cip(k)ﬂ/’f(k) (k=1,...,D —2) vary from 0 to 7w and ¢?, 6% from 0
to 2m. With use of these transformation, we can calculate an average over {££} as
1 ™ ™ ™ 2w . (D—2 . (D—3 .
(FEL)Ner = i A dng‘(l) /0 d¢iﬂ(2) .. /0 d¢;‘(D_2) /0 il sin' )M(l) sin(P—3) 5(2) . ..smzp;‘(D_z)
Xf("/"f(1)""7¢7‘:‘;D_2)’9£l) (25)
where
™ i T 27
7= /O dyt, /0 dipley -+ /0 Wiy [ a0t (26)

Therefore, the average is calculated as

(e pe{zm (3 seer) Sz

= 1;[ <<exp [ﬂ Z {mgtsf-‘ xf — %(%é‘ wf)z}} >>

(see Appendix). Inserting Eq. (27) into Eq. (22) and introducing order parameters 7,, and g,,, we integrate over m/,

and make a saddle-point approximation for the integration over m’,r,,, and g,,, following AGS. Thus, we get the
expression of ((Z™)) as

1o (5) ()

—g ;(mZ)2 + <<N1n Tre» exp az—ﬂDz Do Teo' @7+ B (my 4 hY)'E 2 — %(”S” *)? >> :

p#o vp e

Bpn B
= exp (——E exp ; E ;mﬁmgtmf :Eld

(27)

n(n-1)
2

2
exp —gTrln{(l — %) I— %Q} — Nzalf eraqp,,
p#o

(28)
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where I is a unit matrix with n X n elements and Q is a
matrix {g,,} with zero diagonal elements. The param-
eters m},q,,, and 7,, are determined from the saddle-
point equations to be given as follows:

mz-—"<<%zt£:(mf)>>, v=1,...,s, (29)
dpo = <<% Z t(“’p) (:I:f>>> s (30)

Tpo = é Z (mﬁmﬁ)} , (31)

n>s

where () denotes a thermal average. Eventually, we get
the free energy per neuron as

B B8
f‘l‘_‘.’%[w 26n 350 T 0 {(I_B)I_EQ}

af 1
2D 2 Toeter +
p#o

1
—;3— (ln 'I‘I';c/z exp (ﬂHﬁ))f"} ) (32)
He= 5 3 ritara £ Sl B S (53

In the case of D = 1, this result exactly reduces to that
of AGS for the Hopfield model [3,4]. When we take the
replica symmetric assumption in which my =m”,qps =
q, and 7, =7, Eq. (32) becomes

_a  a By 9
f +2,81n{1 D(l q)} 2 D-BI—q

a,@r + Z(m

_% <<ln TI‘,_. exp (Z Akx(k)> >> 5 (34)
Ap =ﬂ{\/%zk+2(m"+h”)§(k)} (k=1,...,D),

(35)

where (()) denotes the combined average over condensed
patterns {£”} [Eq. (25)] and over the Gaussian noises
21,...,2k defined as

(/&) >>—<< Jo B
X exp <_+—21L—12’) f(s")>> . (36)

sll
Mean-field equations are determined as follows:

of
omY ’
1
vV=— In Tr,
of
!
or ’ (37)
2D o
B(l—gq) = ] <<—a— [lnﬁ exp (Z Arz 1) ):| >>
of
<2 -0
a0, (38)
Dq
e 39
D-B1-0F 39
We note that when we solve these equations, a set of
solutions m* = 0,9 = 0 represents the paramagnetic
state, m* = 0, q # O the spin-glass state and m* # 0,q #

0 the retrieval state. For the case of D = 2, Tr, in Eq.
(34) is calculated explicitly to give

':[\I‘2 exp (Z Akm(k)>
k
27
= dyp exp(A; cos p + Az sinp)
0

2ty (/41 +43) | (40)

where I,(z) is the kth order modified Bessel function
defined by

1

2m
I (2) = g/o dpe” <% cos k. (41)

In the following subsections, we examine the proper-
ties of our model using the free energy (34) under the
conditions

m'=m, m*=0 (v>2), h¥ =0. (42)

A.a=0

In this subsection we examine the case a = 0, in which
an intensive number of patterns are embedded in the net-
work (N = 00). We put o = 0 in Eq. (34) and get

o_.(Bm
f=%m2_%1n D(Igg,;%’ (43)
where
Cy=2y7m, Co=2m, Cs=2nm,
Cp = /#T' (D; 1) /O7r d¢zsin® 73 ¢,
™ 27
x/o dCszsinCD—zé dp (D> 4).

The mean-field equation becomes
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Ip(Bm)
I§—1(18m)

According to the property of the modified Bessel func-
tion,

d I,(2) d? I,(z2) {< 0 (2>0)

dzI, 1(z) =~ dz22T,_4(z) | > 0 (2<0),

m =

= g(B;m). (44)

(45)

the function g(3;m) is a sigmoid type one. Therefore,
under the condition

moEm)| <1, (46)

which yields 8 < D or T > 1/D, Eq. (44) has no solution
except for m = 0. On the other hand, as the noise T' de-
creases from 1/D or (3 increases from D, Eq. (44) begins
to have a nonzero positive solution which is stable. Fig-
ure 2 shows positive solutions of Eq. (44) as a function of
temperature T' = 1/(3, for various case of dimension D.

B.T=0

Next we consider the case of a low temperature limit
T = 0 or B = oo, where the mean-field equations (37),
(38), and (39) become as follows:

e << S 2w + >> - A W),
\/Zk 23 + 2y 3o 2wy + Y2

(47)

51— q) = << SkzE+u ke zbe >> = £(),
\/Ek 22 +2y >, zebr) + Y2
(48)

1

r= 3
D{1-5y/& 50}

Y= \/gm. (50)

(49)

1 T
o8|
06
04

D=4
02
o . . . .
0 0.2 0.4 0.6 08 1

FIG. 2. Nonzero solutions of Eq. (44) as a function of tem-
perature T'=1/0 for D =1, 2,3, and 4.

These equations are reduced to a single equation for the
variable y,

y= DAl (51)

Vva+ f2(y)

This is a relation between the retrieval quality m and the
storage level a. The storage capacity a. is the value of
a, above which the Eq. (51) has no solution except for
y = 0. The graphical solution of Eq. (51) is shown in
Fig. 3 for m > 0. The straight line represents the left
hand side (lhs). The dashed curves represent the right
hand side (rhs) plotted for two values of a, one below
and one above a. in the case of D = 2. For a < a, we
have three non-negative solutions, m; = 0,0 < my < ms.
m,, m3 are stable and my is unstable. The solution m,
represents the spin-glass state because m; = 0 and ¢ # 0
and mg3 the retrieval state because m; # 0 and ¢ # 0.
For a > a., there exists only one solution m = 0 which
is the spin-glass state because of ¢ # 0. Figure 3 tells
us that the retrieval solution disappear abruptly. Figure
4 shows the solution m as a function of « in three cases
D = 1,2, and 3. In the case of D = 2, retrieval solution
disappears abruptly at o = 0.0743, which is the storage
capacity a.. Note that this storage capacity is larger
than that of the Cook’s model [13] and is consistent with
the simulation results in Sec. II. In the case of D = 3,
the storage capacity is calculated to be a. = 0.0432.

C. T-a phase diagram

We now turn to the full mean-field equations (37), (38),
and (39), keeping T and « finite. In the case of D = 2,
mean-field equations can be written explicitly as

(s n(vER)
" <<¢A%+A%zo (VaT+a3)

X {\/g(nf(l) + 22§(2)) + m}>>7 (52)

5 T
A
-
-
at 2o (a)
V4 -
7 =
— - -
= L _-="(b)
~|= s -
< - -
2= 3t s - 4
I+ s
N = / -
& "
e
g s 4
Ve
e
e
/
L VY ,/, 4
2 ’
’
/
-
-
-
72
Z,
7,7
7
1r 4 1
72
2
7
v
44
<4
/*
2
o L
o 1 2 3 4 5
Y

FIG. 3. The graphical representation of the solutions of
Eq. (51) in the case D = 2. (a) a = 0.05, (b) a = 0.1.
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FIG. 4. Solutions m of Egs. (50), (51) as a function of « in
the case of D = 1,2, and 3.

E g L(VAT+A3)
ﬁ(l_q)—\/;«\/mzo(\/m)

x {\f“g(zf +23) + m(z1€a) + zz€<2>)}>>’

(53)
(54)

- 29

{2-81-9}
The T-a phase diagram for D = 2 can be obtained by
solving Egs. (52), (53), and (54) numerically. However,
because of the difficulty of the numerical calculation,
we obtained only a part of the phase diagram, i.e., the
boundary between the paramagnetic phase and the spin-
glass one. In order to gain as much information about
the phase diagram as possible under these circumstances,
we try to obtain the qualitative structure of the phase di-
agram analytically.

At high temperature T or low (3, only the set of solu-
tions m = 0,9 = 0 (the paramagnetic state) is possible.
Decreasing the temperature for fixed «, we cross the tran-
sition temperature Tg(a) below which a set of solutions
m = 0,q # 0 (the spin-glass state) appears. With the
anticipation that g will develop continuously from zero,
the r.h.s. of Eq. (54) is expanded in powers of g to give
in the lowest order,

r

29
TR ——, 55
G- (%)
Setting m = 0 in Eq. (53) and using Eq. (55), we get
_ Bar _ B2aq (56)
4 2(2-p)*

From this equation, we find the transition temperature
Ty(a) to be

B

T,(a) = = + (57)

N =

When we, furthermore, decrease the temperature from
Ty(c) for fixed a < a = 0.0743, we cross the transition
temperature Ths(ca). Below Thr(a), a set of solutions
m # 0,q # 0 (the retrieval state) is possible. In this
case the transition is a first order type, so there can be
no expansion in m generally. But we can make an ana-
lytic calculation in the corner of the phase diagram near
a=0and T = %, because we expect both ¢ and the dis-
continuity in m to be small there. There are three small
parameters m, g, and t = 3 —T. The equations (52), (53),
and (54) are expanded in powers of these parameters to
give

1
t= §m2 + ar, (58)
g = 2m? + 2ar, (59)
q
= . 60
" 2(q — 2t)? (60)
From these equations we get
gy)=v* -2y +y+27=0, (61)
where
t 2
TE—, Y= m (62)

This equation has either two positive solutions or none
at all. Tas(a) is determined by the disappearance of the
two solutions. The value of 7 at which the two solutions
just disappear is calculated to be 7 = 1.67. Hence T ()
near « = 0 and T = 1/2 is found to be

1
Tr(a) = 3~ 1.67/a. (63)
In the case of D = 3, we can calculate Ty (o) and T ()
in the same way as shown above, to give

1 1 /5
Tg(a) = 5 + g ga, (64)
1

Tr(e) = 3 1.42V/a. (65)

Summarizing the above results and the storage capac-
ity, which is discussed in the previous subsection, we get
a phase diagram as is shown in Fig. 5. We note that
the agreement between the line Ty obtained theoretically
and that obtained numerically is excellent. Dashed lines
are expected ones, which are depicted to guide the eyes.
This figure tells us that the retrieval regime in the phase
diagram becomes smaller as the dimension D increases,
as expected.

V. SUMMARY

In this paper, we studied a neural network composed of
D-dimensional spin neurons as an extension of the Hop-
field model to a multidimensional one. In the case of
D = 2, we found that a stored phase pattern {6;} itself,
not a translated one {6; + 0}, is retrieved. We analyzed
the network by means of the replica symmetric theory
and got the free energy of the network in the case of
general dimension D. For D = 1, the free energy was
confirmed to coincide that of the Hopfield model. With
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FIG. 5. T-a phase diagram of a network in the case of
D =1,2, and 3.

use of this free energy, first, the case of @« = 0 was studied.
This is the case in which a finite number of patterns are
embedded in the network with an infinite number of neu-
rons. We found that the patterns can be retrieved if the
temperature T is lower than 1/D. Next, we calculated
the storage capacity in the case of D = 2 and D = 3 and
obtained a. = 0.0743 (D = 2) and a. = 0.0432 (D = 3)
for T = 0. In the case of D = 2, our model is similar to
the Cook’s one, but the storage capacity of our model is
larger than that of Cook’s model. One of the reason is
that the synaptic coupling J;; of our model is expressed
by a matrix, which is in need of more information. We
also calculated the phase diagram and found that the re-
trieval regime shrank as dimension D increased. It was
difficult to calculate the storage capacity for D > 4, but
the dependence of the storage capacity on dimension D
is an interesting open problem.
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APPENDIX A: DERIVATION OF EQ. (27)

In this Appendix, we show how to calculate ( »6# in

Eq. (27). First, we estimate the exponential in the second
line of Eq. (27).

1
exp [ﬂz {mﬁtﬁf e — o5 (& ‘”f)z}]
P
D D
— el _ . 123 H
=exp | Y X;€l) — Z Y;(€lG)? = D Zinkli €l
j=1 i#k
2
D D
LM
~1+ Z Xikig) + ZXafim
=1
- Z YJ'(’EzH(j))2 - Z Zik€i(3) itk (A1)
=1 s
where
1
X; ﬁEm Tii) ™ (TN (A2)

/N

)
Y= o S ~0(5). (3)
1

1
N
I 2N ~ i(3)*i(k) N

and we neglected terms which are smaller than O(1/N)
in the Taylor expansion. Using Eq. (25), we easily find
the following:

) , (A4)

(( ,(J)>>ﬁ‘ =0 (j=1,...,D), (A5)
<<€l<1>€z(k)>>€f =0 (k=1,...,D;j#k), (A6)
((€)?),, =5 (=1...D) (A7)

Therefore we can calculate as

D D

L oN\2 em e

=D Y€)= D Zix i(j)ﬁi(k)>>
j=1 IiF#k e
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Il

I

2
H exp ,:ln {1 + —2'95 ;mﬁmgtwf x7 —
i o

_Ppn ex Z—ZZm“m“thmﬂ’
exp 2D Pui2Dpapai,,

|

(A8)

where we used an approximation In(1 + €) = € for sufficiently small e. Equation (A8) is the final form of Eq. (27).
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